1. Give the functions vertex, axis of symmetry, domain and range.

$$h(x) = -(x-5)^2 + 2$$
. $V(5,2)$ $V(5,2)$ $V(5,2)$ $V(5,2)$ $V(5,2)$ $V(5,2)$ $V(5,2)$ $V(5,2)$

2. Write the equation of the parabola in vertex form. Then rewrite the equation in standard form.

Vertex: (-2, 5) and passes through the Point: (2,13)

$$13 = a(2+2)^{2} + 5$$

$$13 = 16a + 5$$

$$8 = 16a$$

$$a = \frac{1}{2}x^{2} + 2x + 2 + 5$$

$$a = \frac{1}{2}x^{2} + 2x + 7$$

3. Graph the parabola by finding the x-intercepts, y-intercept and vertex.

$$y = x^{2} + 10x - 24$$
 $\frac{-b}{2a} = \frac{-16}{2(0)} = -5$
 $(x-9)(x+0)(2)=0$
 $(-5)^{2}+10(-5)-24$
 $(-5)^{-2}+10(-5)=0$
 $(-5)^{2}+10(-5)=0$
 $(-5)^{-2}+10(-5)=0$
 $(-5)^{-2}+10(-5)=0$
 $(-5)^{-2}+10(-5)=0$
 $(-5)^{-2}+10(-5)=0$
 $(-5)^{-2}+10(-5)=0$
 $(-5)^{-2}+10(-5)=0$
 $(-5)^{-2}+10(-5)=0$
 $(-5)^{-2}+10(-5)=0$
 $(-5)^{-2}+10(-5)=0$

4. Find the x-intercepts of the parabola.

$$y = 3x^{2} - 10x + 8$$

$$(3x + 2)(x - 4) = 0$$

$$3x + 2 = 0 \qquad x - 4 = 0$$

$$x - \frac{2}{3} \qquad x = 4$$

5. Solve the equation by factoring.

A.
$$x^2 + 5x = 24$$

 $x^2 + 5x = 24z0$
 $(x + 8)(x - 3)$
 $x = -8$ $x = 3$

B.
$$3x^{2} - 8x = -4$$

 $3x^{2} - 8x + 4 = 0$
 $(3x - 2)(x - 2)$
 $x^{2} = 3$

6. The height, in feet, of a t-shirt launched from a t-shirt cannon high in the stands at a football stadium is given by $h(x)=-16x^2+32x+128$, where x is the time in seconds after the t-shirt is launched. How long will it take before the t-shirt reaches the ground?

7. Write the equation of a parabola with *x*-intercepts at (-3, 0) and (2, 0) that passes through the point (-2, 4) in **Factored form**, then rewrite the equation in **Standard Form**.

$$y=a(x-p)(x-e)$$
 $y=a(x-p)(x-e)$
 $y=a(x+3)(x-2)$
 $y=a(x+3)(-2-2)$
 $y=a(1)(-4)$
 $y=4a$
 $a=-1$
 $y=-(x+3)(x-e)$

$$y = -(x^2 + x - 6)$$

$$-x^2 - x + 6$$

8. Use your calculator to find the equation in standard form of the parabola that passes through the points (-3, 2), (-1, 0), (1, 6)

Then use algebra to prove that the equation is correct.

$$3-4$$

 $2=96-36+6$
 $0=6-6+6$
 $6=a+6+6$

$$0 = a - b + c$$
 $6 = a + b + c$
 $6 = a +$

$$E_{E} 3 - 6_{E} 1$$

$$C_{+} 6 + c = 4$$

$$(-) 9_{c} - 36 + c = 2$$

$$-8_{a} + 9_{b} = 9$$

$$-8_{a} + 9_{b} = 9$$

$$-8_{a} + 9_{a} = 9$$

$$-8_{a} + 12 = 9$$

$$-8_{a} = -8$$

$$a = 1$$

Eg 3 F 6c 2

.

•